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LETTER TO THE EDITOR 

Tunnelling of a large spin at finite temperature 

0 B Zaslavskii 
Kharkov State University, Kharkov, Ukraine 310077, USSR 

Received 7 June 1989 

Abstract. The spin system with two-axis anisotropy is considered. The temperature depen- 
dence of the probability of transition from the metastable state due to quantum and thermal 
fluctuations is determined. The method of calculation is based on exact correspondence 
between the spin system and a particle moving in a potential field. 

Tunnelling between two classical degenerate states in a double well and the decay of the 
metastable state are known effects in quantum mechanics. But it is only recently that 
such tunnelling has begun to be investigated for spin systems (van Hemmen and Suto 
1986, Enz and Schilling 1986a, b, Scharf et a1 1987, Chudnovsky and Gunther 1988a). 
This question needs special methods to be developed. One of them is connected with 
accounting for the contribution of sub-barrier instanton trajectories. Such a method 
(which is physically relevant for the consideration of tunnelling) enables one to calculate 
the energy splitting of the ground state, including the pre-exponential factor (Enz and 
Schilling 1986b). But it is rather complicated, deals with the phase variable (which is not 
a well defined quantity in quantum mechanics-Carruthers and Nieto 1968) and is not 
convenient for generalisation at finite temperatures. 

I develop in this Letter another approach, which is connected with exact cor- 
respondence between the spin systems and a particle moving in a potential field. It 
provides the possibility of using quantum mechanical methods directly, and of inves- 
tigating spin tunnelling at a finite temperature, T # 0. 

Let us consider the spin system with a Hamiltonian 

H = BS; - AS: - hS,. (1) 
The energy levels E,, of such system correspond to the boundaries of bands for a particle 
described by the Schrodinger equation (Zaslavskii and Ulyanov 1987) 

(S + d2Y/dx2 + Y(K - V )  = 0 E = K ( S  + a)2 (A  + B)  (2) 

(a2 - b V=-- +-- 
d n 2 x ( 1  + b)2  

2a cnx s n 2 x  1 
1 + b d n ' x  (3) 

a = h/A(2S + 1) 

the modulus of the elliptic functions being k = (1 + b)-'I2. 

is possible to ignore the difference between (S + 
calculations. 

b = B / A  

The value (S + ; ) - I  plays the role of the Planck constant A.  For large spin S B 1 it 
and S(S + l ) ,  which simplifies 
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If h > ho = B(2S + 1) the system has the metastable state. It corresponds, for 
example, to the point xo = 0 in the potential picture. 

Now one can use the results of calculations of the transition probability for such 
potential directly in a WKB approximation (Noble 1979, Affleck 1981) or in terms of 
instanton technique (Weiss and Haeffner 1983). Consider the case h - h ,  6 ho, so a = 
b. One can then use a power expansion of the potential 

V(x)  - V(0) = cx2 - dx4 + . . . . (4) 
Following the last mentioned paper, the temperature dependence of the transition 
probability 

r(T)/l?(O) = (1 - e-u/T) exp[(D2/2w) e-"/T]. ( 5 )  

r(0) = ( u / ~ ) ' / ~ + D  exp(-W) (6) 

Here h = 1, w being the frequency of small oscillations near the minimum 

W is the whole Euclidean action along the instanton trajectory, the constant D is 
determined by the asymptotic form of this trajectory 

x ( t )  = x u  + (D/2wm1/*) exp(-wz) 

x ( - x )  = xo 

t + a  
(7) 

x(0) = x1 
m is the particle mass, x1 is the turning point. One can find 

w = 2c1I2(A + B)(S  + 4) 
D = 25/2~[(A + B)/d]'I2(S + 3). 

W = #(c3'/'/d)(S + 4) 
(8) 

Equations (5)-(8) are applicable to any potential of the form (4), if T < T1 = hw/2n. In 
our case 

c = (a - b) / (1  + b)  d = b/4(1 + b). (9) 
For T b TI we have, according to Affleck (1981), 

hU 
2T 

= [ TT,/nh( T - TI)]  sinh -- exp( - T2/T) T2 = (A + B)(S  + +)2~2/4d .  

(10) 
In the high-temperature limit T B T I  the transitions of magnetisation are determined 

by the thermal fluctuations. The corresponding probability has the form 

r = (0/2n) exp( - T 2 / T ) .  (11) 
The general expression for the crossover region where T = T ,  between the quantum 

and thermal fluctuations can be obtained in a similar manner. But it is rather cumbersome 
(Affleck 1981) and is omitted here. 

The potential (3) contains, besides spin states, 'superfluous' states with numbers 
n > 2s. But at temperatures T < T2 (T2  9 T1 since S + 1) the relative contribution of 
such states to the transition probability is negligible. 

Note that for one-axis anisotropy ( B  = 0) the effective potential was obtained in 
Zaslavskii et a1 (1983) and then rediscovered in Scharf et a1 (1987) where it was used in 
a WKB approximation?. 
t The rules of quantisation of the Bohr-Sommerfeld type with quantum corrections were derived for a spin 
Hamiltonian of general form in Zaslavskii (1984). 
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The results of this work can be useful, for example, in the investigation of the 
switching of the magnetic moment in small ferromagnetic particles (Bean and Livingston 
1959, Chudnovsky and Gunther 1988a). 

Strictly speaking the results obtained described only the initial stage of the decay 
timet - r-' due to reflection at the walls. In the thermodynamical equilibrium state the 
transition probability calculated above is compensated by the flux of the opposite sign. 
Such a situation was discussed in Noble (1979) where only outgoing waves have been 
taken into account. 

I did not discuss here a quantum tunnelling in many-particle spin systems which is a 
separate question (Chudnovsky and Gunther 1988b, Caldeira and Furuya 1988, Veksler- 
chik et a1 1989). 

The interesting problem is the effective potential approach for describing the effects 
of dissipation (Legget et a1 1987). 

I am grateful to I V Krive for valuable comments. 
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